Viscosities and Excess Molar Volumes of Binary Mixtures of Alkyl Acetates with Di-, Tri-, and Tetrachloroethane

S. L. Oswal,^{1,4} I. N. Patel,^{1,2} P. S. Modi,^{1,3} and S. A. Barad¹

Received June 24, 1999

The excess molar volume $V^{\rm E}$, viscosity deviation $\Delta \eta$, excess viscosity $\eta^{\rm E}$, and excess Gibbs energy of activation $\Delta G^{*\rm E}$ of viscous flow have been investigated from density ρ and viscosity η measurements of nine binary mixtures of methyl acetate, ethyl acetate, and amyl acetate with dichloroethane, trichloroethane, and tetrachloroethane at 303.15 K. The results were fitted to polynomials of variable degree. The viscosity data have been correlated with the equations of Grunberg and Nissan, Hind, McLaughlin, and Ubbelohde, Tamura and Kurata, Katti and Chaudhri, McAllister, Heric, and Auslaender. The results have been analyzed in terms of molecular interactions between alkyl acetates and chloroethanes.

KEY WORDS: alkyl acetates; binary liquid mixtures; chloroethanes; correlating equations; densities; excess molar volumes; Gibbs energy of activation; molecular interactions; viscosities.

1. INTRODUCTION

In previous papers [1–3] measurements on the viscosities η and the excess molar volumes $V^{\rm E}$ for binary mixtures of methyl acetate, ethyl acetate, amyl acetate, and isoamyl acetate with hexane, tetrachloromethane, and trichloromethane have been reported. The results were explained by considering the disruption of dipolar order in acetates and the specific interactions between acetates and chloromethanes. As an extension of our studies,

¹ Department of Chemistry, South Gujarat University, Surat 395 007, India.

 ² Present address: Department of Chemistry, B.K.M. Science College, Valsad 396 001, India.
 ³ Present address: Department of Chemistry, Jayendrapuri Arts and Science College, Bharuch, India

⁴ To whom correspondence should be addressed.

in this paper we report measurements on viscosities η and excess molar volumes $V^{\rm E}$ for binary mixtures of methyl acetate (MA), ethyl acetate (EA), and *n*-amyl acetate (nAA) with 1,2-dichloroethane (diCE), 1,1,1-trichloroethane (triCE), and 1,1,2,2-tetrachloroethane (tetCE).

2. EXPERIMENTAL

2.1. Materials

The source and purification process of the pure liquids methyl acetate, ethyl acetate, amyl acetate, dichloroethane, trichloroethane, and tetrachloroethane have been described in our earlier papers [1, 4]. The purity of the liquid samples was checked by gas-liquid chromatography and by measuring their physical properties. The measured values of the densities, refractive indices, and viscosities are in very good agreement with literature values. The estimated purity was better than 99.8 mol% for all samples.

2.2. Method

Densities ρ at 303.15 K were measured with an Anton Paar vibratingtube densimeter (Model DMA 60/602) with a thermostated bath controlled to ± 0.01 K. The viscosities η were measured at the same temperature with a modified suspended-level Ubbelohde viscometer [5]. The viscometer was designed so as to minimize surface tension effects [6]. The details of the methods and techniques used to determine ρ and η have been described previously [7, 8].

The mixtures were prepared by mixing known masses of pure liquids in airtight, narrow-mouth ground stoppered bottles taking due precautions to minimize the evaporation losses. All mass measurements were performed on an electronic balance (Mettler AE 163, Switzerland) accurate to 0.01 mg. The possible error in the mole fraction is estimated to be less than $\pm 1 \times 10^{-4}$. The errors in viscosity η and the density ρ were estimated to be less than $\pm 2 \times 10^{-3}$ mPa · s and $\pm 2 \times 10^{-2}$ kg · m⁻³, respectively.

3. CORRELATING EQUATIONS

Several semiempirical relations have been proposed to estimate the dynamic viscosity η of liquid mixtures in terms of pure-component data [9–11]. We have examined equations proposed by Grunberg and Nissan [12], Tamura and Kurata [13], Hind et al. [14], Katti and Chaudhri [15], McAllister [16], Heric [17], and Auslaender [18]. These equations are presented as Eqs. (5)–(11) in Ref. 3.

The correlating ability of each of Eqs. (5)–(11) in Ref. 3 was tested by calculating the standard percentage deviations $\sigma(\%)$ between the experimental and the calculated viscosity as

$$\sigma(\%) = \left[\frac{1}{n-k} \sum \left\{\frac{100(\eta_{\exp} - \eta_{cal})}{\eta_{\exp}}\right\}^2\right]^{1/2}$$
(1)

where *n* represents the number of data points and *k* is the number of numerical coefficients in the respective equations. The values of the standard deviations $\sigma(\%)$ were obtained from the experimental viscosity data by the method of least squares, with equal weights assigned to each point.

4. RESULTS

The viscosity η and density ρ for pure liquids and binary mixtures were measured as a function of mole fraction at 303.15 K, and the results are given in Table I. For a compact and smooth representation, the values of η were fitted to a polynomial equation of the form

$$\eta = \sum_{i=0}^{m} A_i x_i \tag{2}$$

where x_i is the mole fraction of component *i*. The coefficients A_i obtained from a least-squares fit with equal weights assigned to each point are listed in Table II together with the standard deviations σ .

The excess molar volumes $V^{\rm E}$ were calculated from the molar masses M_i and the densities of the pure liquids ρ_i and the mixtures ρ as

$$V^{\rm E} = \sum_{i=1}^{2} x_i M_i [(1/\rho) - (1/\rho_i)]$$
(3)

The viscosity deviations from a linear dependence on mole fraction were calculated by

$$\Delta \eta = \eta - \sum_{i=1}^{2} x_i \eta_i \tag{4}$$

Quantitatively, according to the absolute reaction rates theory [19], the deviations of the viscosities from the ideal mixture values (i.e., the excess viscosity $\eta^{\rm E}$) can be calculated as [20, 21]

$$\eta^{\mathrm{E}} = \eta - \exp\left(\sum_{i=1}^{2} x_{i} \ln(\eta_{i})\right)$$
(5)

	ρ	η	V^{E}	η^{E}	$\varDelta G^{*E}$
x_1	$(kg\cdot m^{-3})$	$(mPa \cdot s)$	$(\mathrm{cm}^3 \cdot \mathrm{mol}^{-1})$	$(mPa \cdot s) \\$	$(J \cdot mol^{-1})$
	(1) 1	Methyl acetate	+ 1,2-dichloroeth	ane	
0.0000	1238.37	0.7239			
0.1016	1204.34	0.6754	0.1046	0.0040	18
0.1990	1172.06	0.6342	0.1901	0.0096	44
0.2978	1139.53	0.5940	0.2698	0.0136	66
0.4014	1106.02	0.5517	0.3179	0.0142	75
0.4966	1075.82	0.5168	0.3234	0.0159	89
0.5959	1044.75	0.4819	0.2995	0.0166	97
0.6976	1013.25	0.4445	0.2513	0.0130	82
0.8973	952.24	0.3780	0.0865	0.0059	42
1.0000	920.85	0.3448			
	(2)	Ethyl acetate	+ 1,2-dichloroetha	ne	
0.0000	1238.37	0.7239			
0.0990	1195.76	0.6790	0.0436	-0.0037	-6
0.2036	1153.04	0.6354	0.0788	-0.0063	-12
0.3005	1115.42	0.6020	0.1010	-0.0039	0
0.3976	1079.51	0.5686	0.1100	-0.0035	1
0.4996	1043.54	0.5353	0.1081	-0.0033	2
0.6025	1008.92	0.5057	0.0964	-0.0010	11
0.6983	978.16	0.4784	0.0703	-0.0004	11
0.7998	946.81	0.4505	0.0466	-0.0004	8
0.9034	916.19	0.4236	0.0121	-0.0005	2
1.0000	888.55	0.4005			
	(3) <i>n</i>	<i>i</i> -Amyl acetate	+ 1,2-dichloroeth	ane	
0.0000	1238.37	0.7239			
0.1052	1171.60	0.7366	-0.0449	0.0098	88
0.1960	1122.51	0.7444	-0.0921	0.0150	138
0.3030	1072.60	0.7582	-0.1508	0.0258	197
0.4004	1033.03	0.7651	-0.1887	0.0300	220
0.4924	999.87	0.7693	-0.2112	0.0316	225
0.5994	965.54	0.7716	-0.2146	0.0309	212
0.7020	936.23	0.7686	-0.1971	0.0249	174
0.8050	909.82	0.7620	-0.1622	0.0154	117
0.8946	888.86	0.7597	-0.1034	0.0105	73
1.0000	866.28	0.7522			

 Table I. Densities, Viscosities, Excess Molar Volumes, Excess Viscosity, and Gibbs Energy of Activation of Viscous Flow for Alkyl Acetate + Chloroethane at 303.15 K

Viscosities of Mixtures of Alkyl Acetates with Chloroethanes

	ρ	η	$V^{\rm E}$	η^{E}	ΔG^{*E}					
x_1	$(kg\cdot m^{-3})$	$(mPa \cdot s)$	$(\mathrm{cm}^3 \cdot \mathrm{mol}^{-1})$	$(mPa \cdot s)$	$(J \cdot mol^{-1})$					
(4) Methyl acetate $+ 1,1,1$ -trichloroethane										
0.0000	1321.40	0.7275								
0.0993	1287.77	0.6661	0.0986	-0.0094	-27					
0.2042	1251.25	0.6072	0.1666	-0.0174	-56					
0.3008	1216.47	0.5599	0.2083	-0.0213	-75					
0.4008	1179.35	0.5182	0.2190	-0.0211	-79					
0.5039	1139.46	0.4792	0.2200	-0.0202	-81					
0.6038	1099.26	0.4462	0.1996	-0.0173	-74					
0.6968	1060.27	0.4186	0.1680	-0.0138	-62					
0.7992	1015.34	0.3921	0.1275	-0.0085	- 39					
0.9020	968.17	0.3668	0.0631	-0.0042	-20					
1.0000	920.85	0.3448								
(5) Ethyl acetate $+ 1, 1, 1$ -trichloroethane										
0.0000	1321.40	0.7275								
0.1006	1277.48	0.6668	0.0848	-0.0183	-66					
0.1989	1235.06	0.6158	0.1206	-0.0303	-117					
0.2986	1192.13	0.5731	0.1387	-0.0356	-148					
0.4038	1146.85	0.5366	0.1431	-0.0351	-155					
0.4965	1106.85	0.5101	0.1434	-0.0308	-144					
0.5999	1062.26	0.4831	0.1265	-0.0254	-126					
0.7003	1018.75	0.4579	0.1141	-0.0211	-110					
0.7974	976.74	0.4366	0.0785	-0.0154	-85					
0.9008	931.75	0.4167	0.0469	-0.0082	-48					
1.0000	888.55	0.4005								
	(6) <i>n</i> -	Amyl acetate -	+ 1,1,1-trichloroet	hane						
0.0000	1321.40	0.7275								
0.1040	1255.78	0.7366	-0.1209	0.0066	40					
0.1989	1201.41	0.7441	-0.2605	0.0118	68					
0.2995	1148.34	0.7518	-0.3975	0.0170	92					
0.4018	1098.36	0.7568	-0.4950	0.0195	104					
0.5014	1053.05	0.7653	-0.5368	0.0255	124					
0.5996	1011.21	0.7667	-0.5148	0.0245	118					
0.6961	972.61	0.7663	-0.4340	0.0217	104					
0.7935	936.18	0.7658	-0.3253	0.0188	86					
0.8993	899.12	0.7589	-0.1615	0.0092	44					

1.0000

866.28

0.7522

Table I. (Continued)

<i>x</i> ₁	ho (kg·m ⁻³)	$\begin{array}{cc} \rho & \eta \\ (kg \cdot m^{-3}) & (mPa \cdot s) \end{array}$		$\eta^{\rm E}$ (mPa · s)	$\Delta G^{*E} (\mathbf{J} \cdot \mathbf{mol}^{-1})$				
	(7) Met	thyl acetate +	1,1,2,2-tetrachloro	ethane					
0.0000	1578.66	1 4845							
0.1030	1578.00	1.4845	0.1704	0 1019	107				
0.1000	1/78 88	1.3792	0 2 2 8 2	0.1500	244				
0.3012	1478.88	1.2078	-0.5285	0.1390	465				
0.3012	1366 36	1.1470	-0.4740	0.1907	555				
0.5998	1302.06	0.8951	-0.6260	0.1829	583				
0.6017	1236.16	0.7640	-0.6131	0.1625	546				
0.6999	1165.97	0.7040	-0.5431	0.1475	485				
0.8014	1088.42	0.5324	-0.4146	0.0716	368				
0.9019	1006.12	0.4308	-0.2267	0.0329	202				
1.0000	920.85	0.3448	0.2207	0.0025	202				
(8) Ethyl acetate $+1,1,2,2$ -tetrachloroethane									
0.0000	1578.66	1.4845							
0.1500	1483.68	1.3576	-0.1805	0.1380	266				
0.2009	1450.94	1.3058	-0.2423	0.1648	335				
0.3141	1376.93	1.1802	-0.3624	0.1965	451				
0.3963	1322.14	1.0802	-0.4332	0.1969	498				
0.4968	1253.75	0.9507	-0.4839	0.1764	506				
0.5996	1182.17	0.8225	-0.4886	0.1458	481				
0.7128	1101.56	0.6857	-0.4416	0.1022	397				
0.8056	1034.05	0.5773	-0.3538	0.0606	271				
0.9246	945.64	0.4625	-0.1684	0.0204	109				
1.0000	888.55	0.4005	0.4005						
	(9) <i>n</i> -A	myl acetate +	1,1,2,2-tetrachloro	ethane					
0.0000	1578.66	1.4845							
0.1051	1479.94	1.4730	-0.2023	0.0909	171				
0.2031	1394.63	1.4456	-0.3826	0.1525	298				
0.3044	1312.35	1.4012	-0.5408	0.1942	397				
0.4008	1238.98	1.3396	-0.6521	0.2092	451				
0.5038	1165.24	1.2562	-0.7068	0.2022	465				
0.5980	1101.68	1.1647	-0.6969	0.1761	435				
0.7002	1036.59	1.0605	-0.6195	0.1383	370				
0.7935	980.48	0.9582	-0.4942	0.0926	270				
0.8927	924.05	0.8565	-0.3052	0.0474	151				
1.0000	866.28	0.7522							

 Table I. (Continued)

Mixture	A_0	A_1	A_2	A_3	$\sigma(\eta)$
MA + diCE	0.7233	-0.4748	0.1399	-0.0439	0.0009
EA + diCE	0.7232	-0.4631	0.2099	-0.0703	0.0010
nAA + diCE	0.7224	0.1534	-0.1228	-0.0021	0.0022
MA + triCE	0.7278	-0.6675	0.4072	-0.1227	0.0004
EA + triCE	0.7267	-0.6439	0.5031	-0.1870	0.0017
nAA + triCE	0.7275	0.0863	0.0034	-0.0656	0.0012
MA + tetCE	1.4831	-0.9302	-0.7678	0.5595	0.0030
EA + tetCE	1.4842	-0.6841	-1.1502	0.7507	0.0014
nAA + tetCE	1.4799	0.1265	-1.4504	0.5928	0.0047

Table II. Coefficients A_i and Standard Deviations $\sigma(\eta)$ of Eq. (2) for the Viscosity η (in mPa · s) of Binary Mixtures

On the basis of the theory of absolute reaction rates [19], the excess Gibbs energy of activation ΔG^{*E} of viscous flow was calculated from

$$\Delta G^{*E}/RT = \left[\ln(\eta V/\eta_2 V_2) - x_1 \ln(\eta_1 V_1/\eta_2 V_2)\right]$$
(6)

where V is the molar volume of the mixture and V_i is the molar volume of the pure component *i*. $V^{\rm E}$, $\eta^{\rm E}$, and $\Delta G^{*{\rm E}}$ data are included in Table I. The estimated uncertainties of $V^{\rm E}$ and $\Delta G^{*{\rm E}}$ are about 0.005 cm³·mol⁻¹ and 15 J·mol⁻¹, respectively.

The values of $V^{\rm E}$, $\Delta \eta$, $\eta^{\rm E}$, and $\Delta G^{*{\rm E}}/RT$ for each mixture were fitted by the Redlich-Kister polynomial equation

$$Y^{\rm E} = x_1(1 - x_1) \sum_{i=0}^{m} A_i(1 - 2x_1)^I$$
(7)

The coefficients A_i in Eq. (7), and the standard deviations σ are given in Table III.

The results of the correlating equations [Eqs. (5)–(11) in Ref. 3] are compiled in Tables IV and V. In Table IV results of Eqs. (5)–(8) in Ref. 3, each containing a single adjustable parameter, are presented, while Table V lists the results of the two-parameter McAllister equation [Eq. (9) in Ref. 3] and the Heric equation [Eq. (10) in Ref. 3] and of the three-parameter Auslaender equation [Eq. (11) in Ref. 3]. The values of the different parameters and the percentage standard deviations $\sigma(\%)$ listed in Tables IV and V were obtained from the experimental viscosity data using the method of least squares.

Mixture	Property	A_0	A_1	<i>A</i> ₂	<i>A</i> ₃	σ
MA + diCE	$V^{\mathbf{E}}$ (cm ³ ·mol ⁻¹)	1.2969	0.1233	-0.4118		0.0035
	$\Delta \eta \ (mPa \cdot s)$	-0.0778	-0.0260			0.0011
	$\eta^E (mPa \cdot s)$	0.0615	-0.0086			0.0010
	$\Delta G^{*E}/RT$	0.1399	-0.0580			0.0017
EA + diCE	$V^{\mathrm{E}} (\mathrm{cm}^3 \cdot \mathrm{mol}^{-1})$	0.4391	0.1408	-0.1812	0.1114	0.0025
	$\Delta \eta \ (mPa \cdot s)$	-0.1109	-0.0344			0.0013
	$\eta^E (mPa \cdot s)$	-0.0157	-0.0246			0.0012
	$\Delta G^{*E}/RT$	0.0017	-0.0314			0.0019
nAA + diCE	$V^{\mathrm{E}} (\mathrm{cm}^3 \cdot \mathrm{mol}^{-1})$	-0.8439	0.2764	0.0935	0.1953	0.0018
	$\Delta \eta \ (mPa \cdot s)$	0.1140	-0.0030			0.0026
	$\eta^E (mPa \cdot s)$	0.1144	-0.0029			0.0026
	$\Delta G^{*E}/RT$	0.3446	0.0414			0.0029
MA + triCE	$V^{\mathrm{E}} (\mathrm{cm}^3 \cdot \mathrm{mol}^{-1})$	0.8806	0.2268	0.0534		0.0029
	$\Delta \eta \ (mPa \cdot s)$	-0.2217	-0.0580			0.0005
	$\eta^E (mPa \cdot s)$	-0.0801	-0.0400			0.0006
	$\Delta G^{*E}/RT$	-0.1215	-0.0253			0.0017
EA + triCE	$V^{\mathrm{E}} (\mathrm{cm}^3 \cdot \mathrm{mol}^{-1})$	0.5544	0.1449	0.2567	0.1813	0.0040
	$\Delta \eta \ (mPa \cdot s)$	-0.2331	-0.0852			0.0022
	$\eta^E (mPa \cdot s)$	-0.1360	-0.0755			0.0021
	$\Delta G^{*E}/RT$	-0.2345	-0.0624	-0.0327		0.0025
nAA + triCE	$V^{\mathrm{E}} (\mathrm{cm}^3 \cdot \mathrm{mol}^{-1})$	-2.1370	0.1908	0.9432	0.1975	0.0033
	$\Delta \eta \ (mPa \cdot s)$	0.0918	-0.0263			0.0013
	$\eta^E (mPa \cdot s)$	0.0923	-0.0259			0.0013
	$\Delta G^{*E}/RT$	0.1870	-0.0229			0.0016
MA + tetCE	$V^{\mathrm{E}} (\mathrm{cm}^3 \cdot \mathrm{mol}^{-1})$	-2.4924	0.4503	0.4562		0.0021
	$\Delta \eta \ (mPa \cdot s)$	-0.0778	0.2679			0.0032
	$\eta^E (\mathbf{mPa} \cdot \mathbf{s})$	0.7281	0.4605			0.0028
	$\Delta G^{*E}/RT$	0.9135	-0.0414	-0.0608		0.0028
EA + tetCE	$V^{\mathrm{E}} (\mathrm{cm}^3 \cdot \mathrm{mol}^{-1})$	-1.9301	0.5632	0.1344	0.1668	0.0016
	$\Delta \eta \ (mPa \cdot s)$	0.0238	0.3700			0.0014
	$\eta^E (mPa \cdot s)$	0.7155	0.5168			0.0017
	$\Delta G^{*E}/RT$	0.8151	0.1050	-0.1353		0.0026
nab tetCE	$V^{\mathrm{E}} (\mathrm{cm}^3 \cdot \mathrm{mol}^{-1})$	-2.8034	0.4411	0.2422	0.3427	0.0048
	$\Delta \eta \ (mPa \cdot s)$	0.5605	0.2833	-0.1335		0.0018
	$\eta^{E} (mPa \cdot s)$	0.8070	0.3111	-0.1311		0.0018
	$\Delta G^{*E} / RT$	0.7370	0.0625	-0.1057		0.0009

Table III. Coefficients A_i and Standard Deviations σ of Eq. (7)

Viscosities of Mixtures of Alkyl Acetates with Chloroethanes

	Eq. (5)		Eq. (6)		Eq. (7)		Eq. (8)	
Mixture	<i>G</i> ₁₂	$\sigma(\%)$	С	$\sigma(\%)$	η_{12}	$\sigma(\%)$	$W_{\rm vis}/RT$	$\sigma(\%)$
MA + diCE	0.12	0.43	0.50	0.39	0.49	0.39	0.14	0.43
EA + diCE	-0.03	0.34	0.53	0.38	0.51	0.55	0.00	0.32
nAA + diCE	0.15	0.31	0.83	0.52	0.80	0.32	0.34	0.43
MA + triCE	-0.16	0.27	0.41	1.44	0.43	0.99	-0.12	0.27
EA + triCE	-0.25	0.66	0.45	1.45	0.45	1.42	-0.24	0.64
nAA + triCE	0.12	0.33	0.80	0.53	0.79	0.35	0.19	0.26
MA + tetCE	0.88	0.53	0.81	3.07	0.88	3.05	0.90	0.49
EA + tetCE	0.79	0.93	0.93	3.70	0.95	3.67	0.78	0.97
nAA + tetCE	0.67	0.63	1.46	1.53	1.38	2.10	0.71	0.67

Table IV. Values of the Parameters of Eqs. (5)–(8) from Ref. 3 and Percent Standard Deviations $\sigma(\%)$ in Correlating Viscosity of Binary Mixtures at 303.15 K

5. DISCUSSION

The values of σ are in the range from 0.26 to 3.70% for the singleparameter Eqs. (5) to (8) from Ref. 3, from 0.16 to 0.62% for the twoparameter Eqs. (9) and (10) from Ref. 3, and from 0.15 to 0.45% for the three-parameter Eq. (11) from Ref. 3. The average percentage standard deviations $\langle \sigma(\%) \rangle$ for Eqs. (5)–(8) with a single parameter are 0.49, 1.44, 1.42, and 0.50, respectively; for Eqs. (9) and (10) with two parameters, $\langle \sigma(\%) \rangle$ is 0.31; and for the three-parameter Eq. (11), $\langle \sigma(\%) \rangle$ is 0.26. From an analysis of the results in Table IV, the Tamura and Kurata

Table V. Values of the Parameters of Eqs. (9)–(11) from Ref. 3 and Percent Standard Deviations $\sigma(\%)$ in Correlating Viscosities of Binary Mixtures at 303.15 K

	Eq. (9)			Eq. (10)			Eq. (11)			
Mixtures	Z_{12}	Z_{21}	$\sigma(\%)$	α ₁₂	α ₂₁	$\sigma(\%)$	B ₁₂	A ₂₁	<i>B</i> ₂₁	$\sigma(\%)$
MA + diCE	0.46	0.51	0.16	0.14	0.06	0.16	0.04	0.02	33.70	0.17
EA + diCE	0.50	0.53	0.19	0.00	0.03	0.19	-0.12	-0.09	-8.23	0.42
nAA + diCE	0.84	0.75	0.29	0.34	-0.04	0.29	2.94	0.72	-3.05	0.19
MA + triCE	0.40	0.44	0.17	-0.12	0.02	0.17	-0.14	-0.08	-7.09	0.16
EA + triCE	0.44	0.46	0.30	-0.24	0.06	0.30	-0.40	-0.19	-2.52	0.39
nAA + triCE	0.80	0.68	0.16	0.19	0.02	0.16	4.80	1.36	-2.33	0.17
MA + tetCE	0.64	0.86	0.41	0.90	0.04	0.41	0.78	0.93	0.79	0.45
EA + tetCE	0.68	0.95	0.62	0.78	-0.12	0.62	0.65	0.97	0.73	0.24
nAA + tetCE	1.10	1.18	0.49	0.71	-0.06	0.49	0.05	1.07	1.19	0.15

Eq. (6) and Hind et al. Eq. (7) have very large values of $\sigma(\%)$, whereas the other two Eqs. (5) and (8) of Grunberg and Nissan and of Katti and Chaudhri, respectively, have comparatively low values of $\sigma(\%)$. The use of two-parameter equations [Eqs. (9) and (10)] reduces the values of $\sigma(\%)$ significantly below those of single-parameter equations. In most systems the three-parameter equation [Eqs. (11)] proposed by Auslaender [18] gives very good results. Thus, the correlating ability increases in the following sequence: Tamura and Kurata \approx Hind et al. < Grunberg–Nissan \approx Katti–Chaudhri < McAllister \approx Heric < Auslaender equations.

The experimental results for η , $\eta^{\rm E}$, $V^{\rm E}$, and $\Delta G^{*{\rm E}}$ at 303.15 K are shown in Figs. 1 to 4. Figure 1 reveals that the viscosities exhibit negative deviations from linear dependence on the mole fraction over the entire range of composition for mixtures of methyl and ethyl acetates with di- and trichloroethanes, but the deviations are positive for amyl acetate mixtures with di- and trichloroethanes. Maxima in the viscosity curves are observed for the latter mixtures. For the common component diCE or triCE, the values of $\Delta \eta$ increase with the chain length of alkyl acetate. In the case of alkyl acetates + tetrachloroethane mixtures, both small positive as well as small negative deviations in the viscosity curves are found for mixtures involving methyl and ethyl acetates. The inversion of sign from positive to negative occurs as the mole fraction of ester is increased. On the other hand, for nAA + tetCE, the deviations are large and positive over the entire range of composition. It can be seen from Fig. 2 that the excess viscosities $\eta^{\rm E}$, as from Eq. (5) are positive for MA + diCE, nAA + diCE, nAA + triCE, MA + tetCE, EA + tetCE, and nAA + tetCE and negative for EA + diCE, MA + triCE, and EA + triCE. The values of η^{E} are very large for alkyl acetates + tetrachloroethane mixtures.

It can be seen from Fig. 3 that the $V^{\rm E}$ are positive for mixtures of methyl and ethyl acetate with di- and trichloroethane, but they are negative for amyl acetate with di- or trichloroethane mixtures. The $V^{\rm E}$ values are large and negative for all three alkyl acetates + tetrachloroethane mixtures. For the common component chloroethane, $V^{\rm E}$ varies as MA > EA > AA except for EA + tetCE whose $V^{\rm E}$ is larger than for MA + tetCE. The $V^{\rm E}$ values for EA + diCE, EA + triCE, and EA + tetCE have been reported in the literature [22]. Our equimolar $V^{\rm E}$ results for EA + tetCE are in agreement within 0.02 cm³ · mol⁻¹, but the $V^{\rm E}$ values are higher by 0.08 cm³ · mol⁻¹ for EA + diCE and lower by 0.065 cm³ · mol⁻¹ for EA + triCE than those reported by Reddy et al. [22]. The values of $\Delta G^{*\rm E}$ (Fig. 4) for the common ester component fall in the order tetCE > diCE > triCE, and for the common chloroalkane component, the sequence is AA > EA > MA.

Results for the present alkyl acetate + chloroethane mixtures can also be explained in a similar manner as has been done for alkyl acetate +

Fig. 1. Viscosity η for alkyl acetate + chloroethane at 303.15 K. Experimental points: (\bullet) MA + diCE; (\blacksquare) EA + diCE; (\blacktriangle) nAA + diCE; (\bigcirc) MA + triCE; (\Box) EA + triCE; (\bigtriangleup) nAA + triCE; (*) MA + tetCE, (×), EA + tetCE; (\oplus) nAA + tetCE. (—) Calculated with Eq. (2).

Fig. 2. Excess viscosity $\eta^{\rm E}$ for alkyl acetate + chloroethane at 303.15 K. (——) Calculated with Eq. (7). Symbols are the same as in Fig. 1.

Fig. 3. Excess molar volumes V^{E} of alkyl acetate + chloroethane at 303.15 K. (——) Calculated with Eq. (7). Symbols are the same as in Fig. 1.

Fig. 4. Excess Gibbs energy of activation ΔG^{*E} of viscous flow for alkyl acetate + chloroethane at 303.15 K. (-----) Calculated with Eq. (7). Symbols are the same as in Fig. 1.

chloromethane [1, 3, 5, 23]. In these mixtures, apart from dipole–dipole interactions, the O \cdots H and O \cdots Cl interactions are of equal significance. The volumetric and compressibility behavior for *p*-dioxane+dichloro-ethane was explained by proposing the formation of dioxane–dichloro-ethane adduct [24, 25]. O \cdots Cl interactions between oxygen of alkyl acetate and chlorine of diCE as well as O \cdots H interactions between oxygen of alkyl acetate and hydrogen of diCE are likely. At present we have no method to separate the two effects.

It is interesting to note that the equimolar H^{E} [26] for MA + triCE is positive (170.7 J · mol⁻¹), while for EA + triCE, H^{E} is negative (-101.5 J · mol⁻¹). Thus, V^{E} and H^{E} have the same trend, i.e., they become smaller as the size of the ester is increased. The volumetric and viscosity results indicate that H of trichloroethane is not involved in H-bond formation with the alkyl acetate molecule, since the 1,1,1-trichloroethane molecule contains no active hydrogen. The specific interactions in these systems can be visualized as due to (a) donor (O) and acceptor (Cl) and (b) dipole– dipole interactions between alkyl acetate and trichloroethane molecule.

From large negative values of $V^{\rm E}$, and large positive values of $\Delta \eta$ and $\Delta G^{*{\rm E}}$, it can be said that analogous to the alkyl acetate + chloroform system [1, 3], the specific interactions between alkyl acetates and tetrachloroethane are very strong. Studies of the acetone + tetrachloroethane system concerning excess molar volume, compressibility, viscosity, and dielectric properties were reported by Nath and Tripathi [27, 28]. They concluded that tetrachloroethane forms a molecular complex with acetone, where tetrachloroethane acts as an acceptor, while acetone acts as a donor. Tetrachloroethane also forms complexes with *p*-dioxane [29, 30]. Similar complexation may occur between alkyl acetate and tetrachloroethane. Thus, it may be inferred that the net combined effect of (i) donor–acceptor type interactions, (ii) H-bond formations, and (iii) closer molecular arrangements in alkyl acetates + tetrachloroethane mixtures dominate over the breaking of dipole associations.

The size effect is reflected in the amyl acetate mixtures, where all three mixtures with diCE, triCE, and tetCE have larger positive $\Delta \eta$ and ΔG^{*E} and larger negative V^{E} than those observed for the methyl and ethyl acetate mixtures.

REFERENCES

- 1. S. L. Oswal and I. N. Patel, Fluid Phase Equil. 149:249 (1998).
- 2. S. L. Oswal, P. Oswal, and J. P. Dave, Fluid Phase Equil. 98:225 (1994)
- 3. S. L. Oswal, J. P. Dave, and I. N. Patel, Int J. Thermophys. 20:1449 (1999).
- 4. S. L. Oswal and I. N. Patel, Indian J. Chem. Sect. A 29:870 (1990.).

- 5. L. Ubbelohde, Ind. Eng. Chem. Anal. Educ. 9:85 (1937).
- 6. F. A. Goncalves, J. Kestin, and J. V. Sengers, Int. J. Thermophys. 12:1013 (1991).
- 7. S. G. Patel and S. L. Oswal, J. Chem. Soc. Faraday Trans. 88:2497 (1992).
- 8. S. L. Oswal and H. S. Desai, Fluid Phase Equil. 149:359(1998).
- 9. J. B. Irving, *Viscosity of Liquid Mixtures*, NEL Report Nos. 630 and 631 (National Engineering Laboratory, East Kilbride, Glasgow, 1977).
- 10. R. C. Reid, J. M. Prausnitz, and B. E. Poling, *The Properties of Gases and Liquids*, 4th ed. (McGraw-Hill, New York, 1987).
- 11. W. Cao, A. Fredenslund, and P. Rasmussen, Ind. Eng. Chem. Res. 31:2603 (1992).
- 12. L. Grunberg and A. H. Nissan, Nature 164:799 (1949).
- 13. M. Tamura and M. Kurata, Bull. Chem. Soc. Japan 25:32 (1952).
- 14. R. K. Hind, E. McLaughlin, and A. R. Ubbelohde, Trans. Faraday Soc. 56:328 (1960).
- 15. P. K. Katti and M. M. Chaudhri, J. Chem. Eng. Data 9:442 (1964).
- 16. R. A. McAllister, AIChE J. 6:427 (1960).
- 17. E. L. Heric and J. C. Brewer, J. Chem. Eng. Data 12:574 (1967).
- 18. G. Auslaender, Brit. Chem. Eng. 10:196 (1965).
- S. Glasstone, K. J. Laidler, and H. Eyring, *The Theory of Rate Process* (McGraw-Hill, New York, 1941), p. 514.
- 20. I. L. Acevedo, G. C. Pedrosa, and M. Katz, Can. J. Chem. 69:1006 (1991).
- D. S. Gill, T. S. Kaur, H. Kaur, I. M. Joshi, and J. Singh, J. Chem. Soc. Faraday Trans. 89:1737 (1993).
- D. V. B. Reddy, K. Ramanjaneyulu, and A. Krishnaiah, *Indian J. Pure Appl. Phys.* 28:107 (1990).
- 23. T. Ohta, H. Asomo, and I. Nagata, Fluid Phase Equil. 4:105 (1980).
- 24. J. Nath and Rashmi, Fluid Phase Equil. 58:319 (1990).
- 25. J. Nath and Rashmi, J. Chem. Soc. Faraday Trans. 86:3399 (1990).
- 26. J. Gmehling, J. Chem. Eng. Data 38:143 (1993).
- 27. J. Nath and A. D. Tripathi, J. Chem. Eng. Data 28:263 (1983).
- 28. J. Nath and A. D. Tripathi, J. Chem. Soc. Faraday Trans. 80:1517 (1984).
- 29. S. L. Oswal, Indian J. Tech. 27:101 (1989).
- 30. S. L. Oswal and R. P. Phalak, J. Solution Chem. 22:43 (1993).